skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Babina, E_V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Spectral and photometric variability of the Classical T Tauri stars RY Tau and SU Aur from 2013 to 2022 is analysed. We find that in SU Aur the H α line’s flux at radial velocity RV  = −50 ± 7  km s−1 varies with a period P = 255 ± 5 d. A similar effect previously discovered in RY Tau is confirmed with these new data: P = 21.6 d at RV  = −95 ± 5  km s. In both stars, the radial velocity of these variations, the period, and the mass of the star turn out to be related by Kepler’s law, suggesting structural features on the disc plane orbiting at radii of 0.2 au in RY Tau and 0.9 au in SU Aur, respectively. Both stars have a large inclination of the accretion disc to the line of sight – so that the line of sight passes through the region of the disc wind. We propose there is an azimuthal asymmetry in the disc wind, presumably in the form of ‘density streams,’ caused by substructures of the accretion disc surface. These streams cannot dissipate until they go beyond the Alfven surface in the disc’s magnetic field. These findings open up the possibility to learn about the structure of the inner accretion disc of CTTS on scales less than 1 au and to reveal the orbital distances related to the planet’s formation. 
    more » « less